Rigidity for local holomorphic isometric embeddings from B n into B N 1 ×

نویسندگان

  • Yuan Yuan
  • Yuan Zhang
چکیده

In this article, we study local holomorphic isometric embeddings from Bn into BN1 × · · · × BNm with respect to the normalized Bergman metrics up to conformal factors. Assume that each conformal factor is smooth Nash algebraic. Then each component of the map is a multi-valued holomorphic map between complex Euclidean spaces by the algebraic extension theorem derived along the lines of Mok and Mok-Ng. Applying holomorphic continuation and analyzing real analytic subvarieties carefully, we show that each component is either a constant map or a proper holomorphic map between balls. Applying a linearity criterion of Huang, we conclude the total geodesy of non-constant components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Rigidity for Local Holomorphic Conformal Embeddings from B Rigidity for Local Holomorphic Conformal Embeddings from B

In this article, we study local holomorphic conformal embeddings from B into B1 × · · · ×BNm with respect to the normalized Bergman metrics. Assume that each conformal factor is smooth Nash algebraic. Then each component of the map is a multi-valued holomorphic map between complex Euclidean spaces by the algebraic extension theorem derived along the lines of Mok and Mok-Ng. Applying holomorphic...

متن کامل

On Isometric and Minimal Isometric Embeddings

In this paper we study critial isometric and minimal isometric embeddings of classes of Riemannian metrics which we call quasi-κ-curved metrics. Quasi-κ-curved metrics generalize the metrics of space forms. We construct explicit examples and prove results about existence and rigidity. Introduction Definition: Let (M, g̃) be a Riemannian manifold. We will say g̃ is a quasi-κcurved metric if there ...

متن کامل

h-PRINCIPLE AND RIGIDITY FOR C1,α ISOMETRIC EMBEDDINGS

In this paper we study the embedding of Riemannian manifolds in low codimension. The well-known result of Nash and Kuiper [21, 20] says that any short embedding in codimension one can be uniformly approximated by C isometric embeddings. This statement clearly cannot be true for C embeddings in general, due to the classical rigidity in the Weyl problem. In fact Borisov extended the latter to emb...

متن کامل

On the asymptotic behavior of holomorphic isometries of the Poincaré disk into bounded symmetric domains

In this article we study holomorphic isometries of the Poincaré disk into bounded symmetric domains. Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which are isometries up to normalizing constants with respect to the Bergman metric, showing in particular that the graph V0 of any germ of holomorphic isometry of the Poincaré disk ∆ into...

متن کامل

On Holomorphic Isometric Embeddings of the Unit Disk into Polydisks

We study the classification of holomorphic isometric embeddings of the unit disk into polydisks. As a corollary of our results, we can give a complete classification when the target is the 2-disk and the 3-disk. We also prove that the holomorphic isometric embeddings between polydisks are induced by those of the unit disk into polydisks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011